Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations
نویسندگان
چکیده
منابع مشابه
Quaternion Singular Value Decomposition based on Bidiagonalization to a Real Matrix using Quaternion Householder Transformations
We present a practical and efficient means to compute the singular value decomposition (svd) of a quaternion matrix A based on bidiagonalization of A to a real bidiagonal matrix B using quaternionic Householder transformations. Computation of the svd of B using an existing subroutine library such as lapack provides the singular values of A. The singular vectors of A are obtained trivially from ...
متن کاملQuaternion matrix singular value decomposition and its applications for color image processing
In this paper, we first discuss the singular value decomposition (SVD) of a quaternion matrix and propose an algorithm to calculate the SVD of a quaternion matrix using its equivalent complex matrix. The singular values of a quaternion matrix are still real and positive, but the two unitary matrices are quaternion matrices with quaternion entries. Then, applications for color image processing b...
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملA fast structure-preserving method for computing the singular value decomposition of quaternion matrices
In this paper we propose a fast structure-preserving algorithm for computing the singular value decomposition of quaternion matrices. The algorithm is based on the structurepreserving bidiagonalization of the real counterpart for quaternion matrices by applying orthogonal JRS-symplectic matrices. The algorithm is efficient and numerically stable. 2014 Elsevier Inc. All rights reserved.
متن کاملMatrix Theory over the Complex Quaternion Algebra
We present in this paper some fundamental tools for developing matrix analysis over the complex quaternion algebra. As applications, we consider generalized inverses, eigenvalues and eigenvectors, similarity, determinants of complex quaternion matrices, and so on. AMS Mathematics Subject Classification: 15A06; 15A24; 15A33
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2006
ISSN: 0096-3003
DOI: 10.1016/j.amc.2006.04.032